Aggregation Optimizations
This page reports benchmarking results of various aggregation optimizations, including server-side optimizers.
The bold method name indicates that the implementation is official (by the author of the original paper).
Please consider submitting your results!
OpenImage (Image Classification)
Rank | Method | Model | Test Accuracy | Training Rounds | FedScale Runtime(h) | Contact | References | Date |
---|---|---|---|---|---|---|---|---|
1 | FedYoGi | MobileNet-V2 | 0.7525 ± 0.0007 | 1930 | 258 | FedScale Team | Paper, Code | Feb 13, 2022 |
2 | FedYoGi | ShuffleNet-V2 | 0.7404 ± 0.001 | 1872 | 232 | FedScale Team | Paper, Code | Feb 13, 2022 |
3 | FedProx | MobileNet-V2 | 0.7034 ± 0.0013 | 1680 | 223 | FedScale Team | Paper, Code | Feb 13, 2022 |
4 | FedAvg | ShuffleNet-V2 | 0.7027 ± 0.0011 | 2070 | 273 | FedScale Team | Paper, Code | Feb 13, 2022 | 5 | FedAvg | MobileNet-V2 | 0.7009 ± 0.0008 | 2190 | 291 | FedScale Team | Paper, Code | Feb 13, 2022 | 6 | FedProx | ShuffleNet-V2 | 0.6954 ± 0.0015 | 1665 | 221 | FedScale Team | Paper, Code | Feb 13, 2022 |
FEMNIST (Image Classification)
Rank | Method | Model | Test Accuracy | Training Rounds | FedScale Runtime(h) | Contact | References | Date |
---|---|---|---|---|---|---|---|---|
1 | FedAvg | ResNet-18 | 0.7850 ± 0.0009 | - | - | FedScale Team | Paper, Code | Feb 13, 2022 |
2 | FedProx | ResNet-18 | 0.7840 ± 0.0012 | - | - | FedScale Team | Paper, Code | Feb 13, 2022 |
3 | FedYoGi | MobileNet-V2 | 0.7630 ± 0.0015 | - | - | FedScale Team | Paper, Code | Feb 13, 2022 |
Google Speech (Speech Recognition)
Rank | Method | Model | Test Accuracy | Training Rounds | FedScale Runtime(h) | Contact | References | Date |
---|---|---|---|---|---|---|---|---|
1 | FedAvg | ResNet-34 | 0.6337 ± 0.0014 | 480 | 108 | FedScale Team | Paper, Code | Feb 13, 2022 |
2 | FedProx | ResNet-34 | 0.6325 ± 0.0011 | 555 | 125 | FedScale Team | Paper, Code | Feb 13, 2022 |
3 | FedYoGi | ResNet-34 | 0.6267 ± 0.0023 | 600 | 133 | FedScale Team | Paper, Code | Feb 13, 2022 |