Aggregation Optimizations


This page reports benchmarking results of various aggregation optimizations, including server-side optimizers.

The bold method name indicates that the implementation is official (by the author of the original paper).

Please consider submitting your results!


OpenImage (Image Classification)

Rank Method Model Test Accuracy Training Rounds FedScale Runtime(h) Contact References Date
1 FedYoGi MobileNet-V2 0.7525 ± 0.0007 1930 258 FedScale Team Paper, Code Feb 13, 2022
2 FedYoGi ShuffleNet-V2 0.7404 ± 0.001 1872 232 FedScale Team Paper, Code Feb 13, 2022
3 FedProx MobileNet-V2 0.7034 ± 0.0013 1680 223 FedScale Team Paper, Code Feb 13, 2022
4 FedAvg ShuffleNet-V2 0.7027 ± 0.0011 2070 273 FedScale Team Paper, Code Feb 13, 2022
5 FedAvg MobileNet-V2 0.7009 ± 0.0008 2190 291 FedScale Team Paper, Code Feb 13, 2022
6 FedProx ShuffleNet-V2 0.6954 ± 0.0015 1665 221 FedScale Team Paper, Code Feb 13, 2022

FEMNIST (Image Classification)

Rank Method Model Test Accuracy Training Rounds FedScale Runtime(h) Contact References Date
1 FedAvg ResNet-18 0.7850 ± 0.0009 - - FedScale Team Paper, Code Feb 13, 2022
2 FedProx ResNet-18 0.7840 ± 0.0012 - - FedScale Team Paper, Code Feb 13, 2022
3 FedYoGi MobileNet-V2 0.7630 ± 0.0015 - - FedScale Team Paper, Code Feb 13, 2022

Google Speech (Speech Recognition)

Rank Method Model Test Accuracy Training Rounds FedScale Runtime(h) Contact References Date
1 FedAvg ResNet-34 0.6337 ± 0.0014 480 108 FedScale Team Paper, Code Feb 13, 2022
2 FedProx ResNet-34 0.6325 ± 0.0011 555 125 FedScale Team Paper, Code Feb 13, 2022
3 FedYoGi ResNet-34 0.6267 ± 0.0023 600 133 FedScale Team Paper, Code Feb 13, 2022